The 4 Year Stability of Psychopathic Traits in Non-Referred Youth

Paul J. Frick, Ph.D.,* Eva R. Kimonis, M.S., Danielle M. Dandreaux, M.S., and Jamie M. Farell, M.S.

One significant limitation in research extending the construct of psychopathy to youth has been the absence of longitudinal studies testing the stability of psychopathic traits prior to adulthood. To begin to address this limitation, the current study estimated the stability of psychopathic traits over a 4 year period in a sample of non-referred children in the third, fourth, sixth, and seventh grades at the first assessment. For parent ratings of psychopathic traits, stability estimates using intra-class correlation coefficients ranged from 0.80 to 0.88 across 2–4 years, with a stability estimate of 0.93 across all four assessments. There were also distinct trends in the patterns of stability found in the sample. Specifically, children rated as being initially high on these traits were more likely to be rated lower at later assessments than was the case for children rated initially low on these traits. Finally, the child's level of conduct problems, the socioeconomic status of the child's family, and the quality of parenting the child received were the most consistent predictors of stability of psychopathic traits. Copyright © 2003 John Wiley & Sons, Ltd.

Research extending the construct of psychopathy to youth has been quite promising in a number of respects. For example, the presence of psychopathic features has been proven to designate a subgroup of antisocial youth with more severe and more aggressive patterns of antisocial behavior in forensic (Caputo, Frick, & Brodsky, 1999; Kruh, Frick, & Clements, in press), mental health (Christian, Frick, Hill, Tyler, & Frazer, 1997), and community (Frick, Cornell, Barry, Bodin, & Dane, 2003; Lynam, 1997) samples. Further, children with conduct problems who also show psychopathic traits show a number of distinct characteristics compared to other antisocial youth, mirroring research on antisocial adults with psychopathy (Hare, 1998; Hart & Hare, 1997). For example, antisocial youth who also show

*Correspondence to: Paul J. Frick, Department of Psychology, University of New Orleans, 2001 Geology and Psychology Building, New Orleans, LA 70148, U.S.A. E-mail: pfrick@uno.edu
This work was supported by grant MH55654 from the National Institute of Mental Health made to the first author.

Contract/grant sponsor: National Institute of Mental Health; contract/grant number: MH55654.

Copyright © 2003 John Wiley & Sons, Ltd.
psychopathic traits demonstrate a stronger preference for novel, exciting, and dangerous activities (Frick et al., 2003b; Frick, Lilienfeld, Ellis, Loney, & Silverthorn, 1999), are less sensitive to cues of punishment, especially when a reward-oriented response set is primed (Barry et al., 2000; Fisher & Blair, 1998; Frick et al., 2003b) and are less reactive to threatening and emotionally distressing stimuli (Blair, 1999; Frick et al., 2003b; Loney, Frick, Clements, Ellis, & Kerlin, 2003).

Unfortunately, the research extending the construct of psychopathy to youth has largely been cross-sectional in nature. As a result, there is limited evidence for the predictive utility of psychopathic features prior to adulthood (Edens, Skeem, Cruise, & Cauffman, 2001). There are several notable exceptions in which psychopathic features have predicted subsequent delinquency, aggression, number of violent offenses, and a shorter length of time to violent reoffending in institutionalized antisocial youth (Brandt, Kennedy, Patrick, & Curtin, 1997; Forth, Hart, & Hare, 1990; Toupin, Mercier, Dery, Cote, & Hodgins, 1995). In one of the only studies to test the predictive utility of psychopathic features in a non-referred sample of children, Frick, Cornell, Barry, Bodin, and Dane (2003) reported that children with conduct problems and psychopathic features showed more severe and more instrumental aggression and had higher rates of self-reported delinquent acts one year later compared with children with conduct problems but without psychopathic traits.

These results suggest that psychopathic features may designate an especially severe, aggressive, and chronic type of disturbance in antisocial youth. However, there are a number of limitations in this body of research. First, most studies have relied on clinic-referred or forensic samples (except Frick et al., 2003a; Lynam, 1997) and focused on the adolescent age group (except Christian et al., 1997; Frick et al., 2003a). Second, even the studies that have used prospective designs have had limited follow-up periods, typically with follow-up periods of one (Frick et al., 2003a) to two (Brandt et al., 1997; Forth et al., 1990) years. Third, while these few prospective studies have tested the utility of psychopathic traits in youth for predicting later antisocial and delinquent behavior, these studies have not tested the stability of the actual traits associated with psychopathy.

While there is still much debate as to how best to conceptualize the core dimensions of psychopathy (Hare, 2003), several recent factor analyses in adults (Cooke & Michie, 2001) and children (Frick, Bodin, & Barry, 2000) have isolated three core dimensions. One dimension focuses on a callous and unemotional interpersonal style; the second dimension focuses on an inflated and egocentric view of oneself; and the third focuses on an impulsive and antisocial lifestyle. A recent critique of the literature extending the construct of psychopathy to youth noted that some level of behavior in each of these dimensions is normative in youth, particularly in adolescence (Seagrave & Grisso, 2002). As a result, the authors suggested that, until research demonstrates that these traits designate a stable dimension of personality in youth, comparable to the stability found in adult samples, definitions of psychopathy run the risk of applying a potentially stigmatizing label to some youth who may only be showing a transient pattern of behavior related to their developmental stage.

A number of important issues raised in this critique have been debated (see Frick, 2002, Hart, Watt, & Vincent, 2002, & Lynam, 2002, for a more extended discussion of these issues). One issue relates to the assumption that the stability of psychopathic traits has been firmly established in adults. This assumption is largely
based on research showing that incarcerated adults with psychopathic traits often
do not respond to typical interventions (see, e.g., Ogloff, Wong, & Greenwood,
1990) and that these adults are at high risk for recidivism once released from prison
(see, e.g., Gendreau, Goggin, & Smith, 2002; Hemphill, Hare, & Wong, 1998; Walters,
2003). However, recent reviews of the literature on the treatment of psychopathy have called into question the extreme pessimism surrounding treat-
ment (Salekin, 2002; Skeem, Monahan, & Mulvey, 2003). More importantly, this
body of research does not provide a direct estimate of the stability of the core traits
associated with psychopathy in adults. One of the reasons for the paucity of infor-
mation on the stability of psychopathic traits is that the most widely used
method for assessing these traits relies heavily on historical information (Hare,
2003), making it difficult to assess changes in these traits over time. Therefore, with
three notable exceptions, the actual stability of these traits across adulthood has not
been tested.

First, Harpur and Hare (1994) compared the prevalence of diagnoses of
psychopathy and the mean level of psychopathic traits in six different age groups
of adult offenders, ranging in age from 16 to 70. These authors reported that overall
rates of psychopathy declined with age, especially after age 45. Also, this decline
tended to be stronger for the impulsive and antisocial lifestyle dimension of
psychopathy, whereas the average level of the interpersonal and affective traits of
psychopathy remained fairly stable across age groups. Importantly, this study was a
cross-sectional study showing cohort changes in the level of psychopathy and, thus,
did not test the stability of psychopathic traits directly. Second, Schroeder,
Schroeder, and Hare (1983) did directly assess stability in a sample of incarcerated
adults. These authors reported a stability coefficient of 0.89 for psychopathic traits
over a 10 months period. Although this does indicate substantial stability, the
follow-up period was rather limited. Third, in one of the best tests of the stability of
psychopathic traits in adults, Rutherford and colleagues (Rutherford, Cacciola,
Alterman, McKay, & Cook, 1999) reported 2 year stability estimates obtained in a
sample of 200 male and 25 female patients receiving methadone treatment for drug
abuse. The 2 year stability estimates reported in this study were 0.60 for men and
0.65 for women.

Taken together, there is not a great deal of evidence documenting the level of
stability of psychopathic traits in adult samples. However, even if one assumes that
these traits are relatively stable in adults, the contention that they should be
comparably stable in youth is still questionable. While there is some continuity in
personality traits across childhood (Buss, 1995), personality traits are generally
found to be less stable in children than in adults (see, e.g., McCrae et al., 2002;
Roberts & DelVecchio, 2000). This lower stability is not surprising, given the
developmental changes that are occurring in children that help to shape their
eventual personality. In fact, one of the primary motivations for extending the
construct of psychopathy to youth is to hopefully identify these traits when they are
more malleable (i.e. less stable) and amenable to treatment (Frick, 1998, 2001).
Thus, one would expect, and actually hope, that psychopathic traits are less stable in
youth and that factors could be identified that predict changes in these traits.
However, the level of stability could be so low that considering it a “personality”
construct in children, which assumes at least a modest level of temporal stability, is
questionable (Buss, 1995).
Based on these considerations, the primary purpose of the study was to determine the stability of psychopathic traits across late childhood and into adolescence. However, a second goal of the study was to begin to test variables that might influence the stability of these traits. It was difficult to make hypotheses on potential predictors of stability, given the absence of research in the area. However, several variables were tested as potential predictors of stability based on the following theoretical considerations.

First, we tested whether psychopathic traits are more stable in the context of significant antisocial behavior. As mentioned previously, most of the available research on psychopathy in both adults and youth has focused on forensic or clinic-referred samples. As a result, much of the available research only pertains to psychopathic individuals who show high levels of antisocial and criminal behavior. However, most theories of psychopathy recognize that psychopathic traits can be present in individuals who do not show significant antisocial behavior (Cleckley, 1976; Hare, 1998; Lilienfeld & Andrews, 1996). In the current study, we test whether the stability of these traits is influenced by the level of one's antisocial behavior. Second, as noted above, youth with psychopathic traits show characteristics associated with a temperament that has been labeled as low fearfulness or low behavioral inhibition (Frick & Morris, in press), such as seeking out novel and dangerous activities and showing a reward dominant cognitive style. These characteristics have been critical to many theoretical models to explain the potential causes of psychopathy (Hare, 1998; Lykken, 1995; Patrick, 1994). However, it is also possible that such measures of behavioral inhibition predict the stability of these traits, with the most temperamentally vulnerable individuals showing the most stable manifestations of psychopathy. Third, while psychopathy and antisocial behavior are not interchangeable constructs, they are clearly related. Therefore, some of the factors within the child (e.g. low intelligence) and factors within his or her psychosocial context (e.g. low socioeconomic status, dysfunctional parenting practices) that have been found to predict a more stable pattern of antisocial behavior in youth (see Frick & Loney, 1999, for a review) may also be related to the stability of the psychopathic traits. The potential importance of parenting factors is particularly notable, given evidence that parenting has a strong influence on the development of guilt, empathy, and other aspects of conscience in children (Frick & Morris, in press; Hoffman, 1994; Kochanska, 1995).

METHOD

Participants

To address the primary study questions, a community sample of youth was recruited. However, one problem with using a community sample of youth is the need to ensure that there are significant numbers of participants who score high on measures of psychopathic traits. While there are no normative studies estimating the prevalence of these traits, only about one-quarter of adult prisoners (Hart & Hare, 1997) and about one-third of clinic-referred children (Christian et al., 1997) show high levels of these traits. Therefore, rates in a non-referred sample are likely to be quite low. Further, in order to test the potential effects of antisocial behavior on the
stability of these traits, there had to be enough participants high on psychopathic traits with and without significant antisocial behavior to make comparisons. As a result, a two-step stratified random sampling procedure was employed to oversample youth high on psychopathic traits and to ensure sufficient numbers of these youth with and without conduct problems.

In the first step of subject recruitment, 4,000 parents of children in the third, fourth, sixth, and seventh grades of two school systems in a moderate sized city in the southeastern United States received announcements about the study. The two school systems were chosen because one served the immediate urban area and the second served the surrounding region that was predominantly suburban and rural. Those parents who agreed to have their child participate in the study completed consent forms and a screening questionnaire (Gadow & Sprafkin, 1995) that assessed for the presence of DSM-IV symptoms of Oppositional Defiant Disorder (ODD) and Conduct Disorder (CD; American Psychiatric Association, 2000). Parents also completed a questionnaire that assessed for each of three core dimensions of psychopathy (Frick & Hare, 2001). Following receipt of the parents’ consent forms and rating scales, the child’s teacher completed analogous questionnaires. For each child who participated in this initial phase of screening, his or her teacher received $10 for educational supplies for the classroom. This first phase yielded a sample of 1136 children with a mean age of 10.65 (SD = 1.60) that was 53% female, 77% Caucasian, 19% African-American, and 21% receiving special education services, all of which closely matched the overall demographics of the two school systems. The range of Duncan’s Socioeconomic Index (SEI; Hauser & Featherman, 1977) was 0–92.3, with a mean of 47.20 (SD = 23.80).

In the second phase of recruitment, the sample of 1136 children was divided into four groups based on combined parent and teacher ratings of conduct problem symptoms and the callous–unemotional (CU) dimension of psychopathy (Frick et al., 2000). The CU dimension was chosen for sample recruitment because it is the dimension of psychopathy that is most independent from antisocial behavior (Frick, O’Brien, Wootton, & McBurnett, 1994; Frick et al., 2000). This allowed for the recruitment of a group of children high on psychopathic traits but low on conduct problems. Further, elevated rates of CU traits and conduct problems were defined as being above the upper quartile for the community sample, whereas normative levels were defined as being at or below the mean of the sample. This ensured divergence between groups defined as being high and low on these dimensions.

The first group was below the mean on both dimensions (n = 225), a second group was at or above the upper quartile on the conduct problem measure but below the mean on the measure of CU traits (n = 66), one group was at or above the upper quartile on the measure of CU traits but below the mean on the measure of conduct problems (n = 77), and the last group was above the upper quartile on both dimensions (n = 128). These four groups were then stratified on gender, ethnicity, and socioeconomic status. Next, 25 children in each of the four groups were recruited to participate in the longitudinal portion of the study, ensuring that about half of each group came from the younger and older cohorts. These children were selected through a stratified random sampling procedure to ensure that the four groups matched the group from which they were sampled on the three stratification variables. Errors in data collection resulted in the loss of two participants from the group high on conduct problems but low on the measure of CU traits. From this...
recruitment procedure, participants were 98 children that fell into the four groups described above. Twenty-one per cent of the children were African-American (the only ethnic group represented other than Caucasian); 47% were girls; the average Duncan’s SEI was 46.67 (SD = 19.96). Children in the sample had an average Kaufman Brief Intelligence (K-BIT; Kaufman & Kaufman, 1990) composite score of 104.83 (SD = 12.88).

This sample of 98 children was invited to participate in yearly assessments. A summary of the measures and sources of information is provided in Table 1. The child’s score on the measure of psychopathy collected during the community screening (time 1) was used as the initial level of these traits. At the first follow-up (time 2), a comprehensive assessment was conducted and it included all of the potential predictors of stability used in analyses. The last three waves of data collection (times 3, 4, and 5) involved repeated ratings of psychopathic traits.

Measures: Repeated Assessment of Psychopathic Traits

Antisocial Process Screening Device (APSD; Frick & Hare, 2001)

The APSD, formerly known as the Psychopathy Screening Device, is a 20-item behavior rating scale that was completed by each child’s parent and teacher at the first assessment and then by each child and his or her parent at the last three follow-up assessments (see Table 1). The APSD was designed to measure the same traits as those assessed by the Psychopathy Checklist—Revised (PCL-R; Hare, 2003). However, on the APSD, these traits are placed in a rating scale format and rated as 0 (Not at all true), 1 (Sometimes true), or 2 (Definitely true). Also, some items from the PCL-R were deleted because they were inappropriate for children (e.g. parasitic lifestyle) or the wording of items was changed to be more developmentally appropriate (Frick et al., 1994; Frick & Hare, 2001). Also, at the initial assessment, the APSD item related to criminal behavior was not included at the request of the participating school systems. Factor analyses conducted on the items collected in the full community screening sample of 1136 children, and replicated in a sample of clinic-referred children, revealed three dimensions on the APSD: a seven-item Narcissism dimension (“thinks he/she is more important than others”), a five-item Impulsivity dimension (e.g. “acts without thinking”), and a six-item Callous–Unemotional dimension (“is concerned about the feelings of others”—reverse scored) (Frick et al., 2000). One item, “lies easily and skillfully” did not show unique or consistent loadings and was not included in the calculation of subscale scores.

The choice of informants for the APSD at each stage of data collection was based on developmental considerations and findings from past research. Parents and teachers were included as informants at the initial assessment because the majority of the sample was pre-adolescent at this time and parents and teachers seem to be optimal informants for this age group in the assessment of many areas of psychological adjustment (Kamphaus & Frick, 2002). Further, there is evidence for the construct validity of these informants on the APSD for pre-adolescent samples (Frick & Hare, 2001). However, at later follow-up assessments, much of the sample had transitioned into adolescence, when the validity of teacher report decreases and the validity of self-report increases in the assessment of most areas of psychological adjustment.
<table>
<thead>
<tr>
<th>Construct</th>
<th>Measure</th>
<th>Method/informants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time 1: community wide screening</td>
<td>Psychopathic traits</td>
<td>Antisocial Process Screening Device (APSD: Frick & Hare, 2001)</td>
</tr>
<tr>
<td>Demographic variables</td>
<td>Age/ethnicity/gender</td>
<td>Parent</td>
</tr>
<tr>
<td></td>
<td>Duncan's Socioeconomic Index (Hauser & Featherman, 1977)</td>
<td>Parent</td>
</tr>
<tr>
<td></td>
<td>Kaufman Brief Intelligence Test (K-BIT; Kaufman & Kaufman, 1990)</td>
<td>Standardized test</td>
</tr>
<tr>
<td>Behavioral inhibition</td>
<td>Computerized Reward Dominance Task (O'Brien & Frick, 1996)</td>
<td>Laboratory task</td>
</tr>
<tr>
<td></td>
<td>Children's Sensation Seeking Scale (SSSC; Russo et al., 1993)</td>
<td>Youth</td>
</tr>
<tr>
<td></td>
<td>a) Thrill and Adventure Seeking Subscale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Oppositional Defiant and Conduct Disorder Symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-Report of Delinquency scale (SRD; Elliott & Ageton, 1980)</td>
<td>Youth</td>
</tr>
<tr>
<td>Parenting practices</td>
<td>Alabama Parenting Questionnaire (Shelton, Frick, & Wootton, 1996)</td>
<td>Parent and youth</td>
</tr>
<tr>
<td></td>
<td>a) Positive Parenting = Parental Involvement and Positive Reinforcement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Negative Parenting = Poor Monitoring/Supervision, Inconsistent Discipline, Harsh Discipline</td>
<td></td>
</tr>
<tr>
<td>Time 3–5: follow-up assessments</td>
<td>Psychopathic traits</td>
<td>Antisocial Process Screening Device (APSD: Frick & Hare, 2001)</td>
</tr>
</tbody>
</table>
adjustment (Kamphaus & Frick, 2002). Again, a number of studies have supported the construct validity of self-report on the APSD for adolescents (Loney et al., 2003; Pardini, Lochman, & Frick, 2003; Silverthorn, Frick, & Reynolds, 2001). The parent report was also collected at the follow-up assessments to maintain one informant that was consistent across assessments.

The distributions, internal consistency estimates, and cross-informant correlations for the APSD total score and subscales at each wave of data collection are reported in Table 2. It is of note that the internal consistency estimates were generally moderate to high for the parent and teacher scales. However, the internal consistency estimates for the self-report scales were lower, especially for the individual subscales. The cross-informant correlations, using the single measure intraclass correlation coefficient (absolute agreement definition) ranged from 0.27 (Narcissism) to 0.39 (Impulsivity) between parents and teachers and from 0.29 (time 4 Narcissism) to 0.57 (time 4 Impulsivity) between parents and children (all \(p < 0.01\)).

Measures: Predictors of Stability (Antisocial Behavior)

The NIMH Diagnostic Interview Schedule for Children—Version 4 (DISC-IV; Shaffer et al., 2000)

The parent and child report on the DISC-IV was used to assess for all symptoms of ODD and CD at the time 2 comprehensive assessment. The DISC-IV is a highly structured interview designed to be administered by lay interviewers with
appropriate training. It has proven to be highly reliable on both the symptom and diagnostic level (Lahey et al., 1994). Interviewers were a licensed psychologist or advanced graduate students in psychology who were trained in standardized administration procedures for the DISC. Symptoms were considered present if endorsed by either the parent or child. The correlations between parent and child report of ODD/CD symptoms was 0.25 (\(p < 0.05 \)) and the coefficient alpha for the combined report of OCC/CD symptoms was 0.87 in the current sample.

Self-Report of Delinquency Scale (SRD; Elliott & Ageton, 1980)

The SRD assesses the child’s self-report of 36 illegal juvenile acts. It was developed from a list of all offenses reported in the Uniform Crime Report with a juvenile base rate of greater than 1% (Elliott & Huizinga, 1984). Due to the relatively young age of the sample at the time 2 comprehensive assessment, the three items related to sexual behavior were omitted from this scale. Consistent with past uses of the scale (see, e.g., Krueger et al., 1994), a composite measure was created summing the number of delinquent acts committed (with a possible range of 0–33). This composite had a coefficient alpha of 0.74.

Measures: Predictors of Stability (Behavioral Inhibition)

Reward Dominance Task (O’Brien & Frick, 1996)

Participants’ sensitivity to punishment cues once a reward-oriented response set is established was assessed using the paradigm employed in previous research with adults (e.g., Newman, Patterson, & Kosson, 1987) and children (Daugherty & Quay, 1991). A more complete description of the specific computer task can be found elsewhere (O’Brien, Frick, & Lyman, 1994; O’Brien & Frick, 1996). The task consists of four games and participants were allowed to earn prizes based on their scores across all four games. In each game, a stimulus (e.g. a fisherman) appeared on the screen and the child chose whether or not to press a key to view the other side of the stimulus (e.g. reel in the fishing pole) or to press a key to stop the game. For each game, there was a successful outcome (e.g. a fish) or an unsuccessful outcome (e.g. no fish) on the other side of the stimulus. Each child began with 50 points, and a point was either added or taken away, depending on the outcome of each trial. The proportion of successful outcomes across each successive ten trials decreased from 90 to 0% over 100 trials. The total number of trials played was recorded and was used as a dependent variable in the analyses because this serves as an index of continued playing despite an increased ratio of punished (loss of point) to rewarded (gain of point) trials. Across the four games, a forced 5 second pause between each trial and the presence of a visual tally of the number of points won were varied in a counterbalanced fashion. As in some previous studies, the forced pause appeared to interrupt the reward dominant response set (Newman et al., 1987; O’Brien et al., 1994). Therefore, only the two conditions in which there was no forced pause prior to being allowed to play the next trial were used in analyses. As in previous uses of this computer task (O’Brien et al., 1994; O’Brien & Frick, 1996), no effect of order or order by condition interactions were found on the task.
Thrill and Adventure Seeking Subscale of the Sensation Seeking Scale for Children (SSS-C; Russo et al., 1993)

The SSS-C was used to measure participants’ preferences for novel and dangerous activities. The scale was modified for use in the study. As in the original version of the scale, participants chose between a pair of statements to indicate which was more true of him/her. One statement (e.g. “I enjoy the feeling of riding my bike fast down a big hill”) describes sensation-seeking behaviors, whereas the other statement describes a preference against sensation seeking behaviors (e.g. “Riding my bike fast down a hill is scary for me”). However, to increase the variance in scores, the modified version also asked each child to rate how well the chosen behavior described him or her by selecting either “sort of true for me” or “really true for me.” This modification created a four point scale for each item. The modified version of SSS-C led to an internally consistent TAS subscale (alpha = 0.84). Although the full SSS-C was administered, only the TAS scale was used in analyses. Its content assesses fearlessness, the aspect of sensation seeking most specifically linked to behavioral inhibition (Kagan & Snidman, 1991). Also, it is the scale from the SSS-C that has been most strongly related to psychopathic traits in children (Frick et al., 1994; Frick et al., 1999b).

Measures: Predictors of Stability (Parenting)

Alabama Parenting Questionnaire (APQ; Shelton et al., 1996)

The APQ includes 42 items assessing five parenting constructs that have been consistently related to antisocial and delinquent behavior in past research (Shelton et al., 1996). These constructs are parental involvement (10 items); parental use of positive reinforcement (6 items); poor parental monitoring and supervision (10 items), parental use of inconsistent discipline (6 items), and parental discipline (10 items; 3 pertaining to corporal and 7 to non-corporal methods of discipline). There are four assessment formats for the APQ. There is a global report in which parenting behaviors are rated by the parents and children as to their typical frequency on a five-point scale from 1 (“Never”) to 5 (“Always”). In the telephone format, parents and children are called four times at least three days apart and asked how often in the past three days each parenting behavior had taken place. The score for each item is the average frequency across the four interviews.

Past research has indicated that the parenting constructs can be combined into two composites: a positive parenting composite involving the parental involvement and use of positive reinforcement scales and a negative composite involving the poor monitoring and supervision, inconsistent discipline, and corporal punishment scales (Shelton et al., 1996; Frick, Christian, Wootton, 1999a). To form these composites, subscales were converted to z-scores and summed within each of the assessment formats. To reduce the number of variables further, the composites of the global report and interview formats were also combined for each informant. For the parent report, the correlation between the global and interview formats for the positive parenting composite was 0.44 (p < 0.001) and that for the negative parenting
composite was 0.37 ($p < 0.001$). For the child report, the correlations were 0.44 ($p < 0.001$) and 0.49 ($p < 0.001$), respectively. However, the decision was made *a priori* not to collapse across informants. This decision was based on past research suggesting that the child report of positive parenting and the parent report of negative parenting may be most strongly associated with problem behavior in late childhood and early adolescence (Frick et al., 1999a). In the current sample, the correlations between the child and parent reported composites were 0.44 ($p < 0.001$) and 0.26 ($p < 0.05$) for the positive and negative parenting composites, respectively.

Procedures

Using the stratified sampling procedure described above, parents and children who participated in the community-wide screening were contacted and invited to participate in a longitudinal study of children’s personality that included the measures used in the current study (see Frick et al., 2003b, for a more complete description of the full assessment procedures). Those who were contacted but refused to participate were replaced by someone in the same group with similar demographic characteristics until 25 participants had been recruited for each group. Two participants were lost due to errors in data collection, and both came from the high conduct problem and low CU traits group.

For the time 2 comprehensive assessment, participants were tested in two sessions with the procedures standardized for all participants. The first session started with an informed consent procedure conducted with the parent and child together. They were then separated and parents were administered a semi-structured interview to obtain demographic information, followed by the DISC-IV interview and the APQ ratings. In a separate room, the children were administered the K-BIT, followed by the youth version of the DISC-IV. At a second testing session, the child completed all of the self-report questionnaires and the Reward Dominance Task. Within one month of this assessment, all four APQ telephone interviews were completed. Parents received $65.00 for their participation in the comprehensive assessment procedures and the youth received a $15.00 gift certificate to either a local music store or book store. The remaining three follow-up assessments took place as close to the 1 year anniversary of the initial assessment as possible. To reduce attrition, the APSD measures were mailed to participants with a self-addressed stamped envelope as part of the follow-up assessments. Parents and youth were provided with separate return envelopes to increase the confidentiality of each person’s responses. Parents and youth were also compensated for participation in the follow-up assessments.

RESULTS

Attrition

Ninety-two per cent of the 98 participants at the time 2 comprehensive assessment completed at least two of the follow-up assessments and 73% completed all three. The average length of time between the initial screening assessment and first
follow-up assessment was 25.43 months (SD = 4.96). Subsequent follow-up assessments were scheduled as close to the 1 year anniversary of the first follow-up assessment as possible, with the average length between the follow-up assessments being 12.63 months (SD = 1.82) and 13.38 months (SD = 2.82), respectively. This led to the average length of time between the screening and the third follow-up assessment being 50.91 (SD = 4.44). Importantly, there were no differences in attrition rates between the groups high and low on CU traits, with 92% of both groups completing at least two follow-up assessments and with 74% and 71%, respectively, completing all three follow-up assessments. Seventy-nine participants completed the last follow-up assessment and this group was compared with the 19 participants who participated in the time 2 comprehensive assessment but did not complete the last follow-up on each of the predictors of stability tested in analyses. The only variable on which the groups differed was on Duncan’s SEI (t(df = 96) = 2.06, p < 0.04; eta-squared = 0.04), with the group not completing the last assessment being from a significantly higher socioeconomic status (M = 61.01; SD = 19.48) than the group completing the last follow-up assessment (M = 48.80; SD = 19.70). None of the effects for other predictors of stability approached significance, with effect sizes (eta-squared) ranging from 0.00 to 0.02.

Stability of Psychopathic Traits

The stabilities of psychopathic traits across 2, 3, and 4 years are provided in Table 3. The stability estimates across time for parent report were generally quite high, with

<table>
<thead>
<tr>
<th>Table 3. Stability of psychopathic traits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Within-informant stability (parent report)</td>
</tr>
<tr>
<td>Time 3</td>
</tr>
<tr>
<td>Time 4</td>
</tr>
<tr>
<td>Time 5</td>
</tr>
<tr>
<td>Stability</td>
</tr>
<tr>
<td>Cross-informant stability (youth report)</td>
</tr>
<tr>
<td>Time 3</td>
</tr>
<tr>
<td>Time 4</td>
</tr>
<tr>
<td>Time 5</td>
</tr>
<tr>
<td>Stability</td>
</tr>
<tr>
<td>Cross-informant stability (parent report)</td>
</tr>
<tr>
<td>Time 3</td>
</tr>
<tr>
<td>Time 4</td>
</tr>
<tr>
<td>Time 5</td>
</tr>
<tr>
<td>Stability</td>
</tr>
<tr>
<td>Cross-informant stability (youth report)</td>
</tr>
<tr>
<td>Time 3</td>
</tr>
<tr>
<td>Time 4</td>
</tr>
<tr>
<td>Time 5</td>
</tr>
<tr>
<td>Stability</td>
</tr>
</tbody>
</table>

CU, Callous–Unemotional Traits; APSD, Antisocial Process Screening Device (Frick & Hare, 2001). ICC, average measure intraclass correlation coefficient (absolute agreement definition); *p < 0.05; **p < 0.01; ***p < 0.001.
average measure intraclass correlation coefficient (absolute agreement definition) estimates of 0.93 ($p < 0.001$) across all time points for the total APSD scores. Overall stability estimates ranged from 0.87 (Impulsivity) to 0.92 (Narcissism) (both $p < 0.001$) for the individual scales. These coefficients suggest that a substantial amount of variance in parent ratings is consistent across time. The intraclass correlation coefficients (ICC) for the four year stability of parenting ratings ranged from 0.71 for the CU scale of the APSD to 0.80 for the total APSD score (all $p < 0.001$).

The cross-informant stability estimates reported in Table 3 were lower but still indicated a substantial amount of variance was consistent across time. For example, the ICC stability estimates for parent report at time 1 predicting later youth self-reports of psychopathy ranged from 0.65 for the Narcissism scale of the APSD to 0.79 for the total and the Impulsivity scale of the APSD (all $p < 0.001$). The four year coefficients ranged from 0.38 ($p < 0.05$) for Narcissism to 0.51 ($p < 0.001$) for the total score. Similarly, for teacher report at time 1 predicting later parent report, the stability estimates ranged from 0.75 to 0.86 (all $p < 0.01$) across all assessments, with the 4 year stability coefficients ranging from 0.36 ($p < 0.05$) to 0.59 ($p < 0.001$). The cross-informant correlations for teacher report predicting later youth self-report were somewhat more variable, due largely to the much lower cross-informant stability for the Narcissism dimension, where there was an ICC of 0.52 ($p < 0.01$) across all assessments, with a 4 year ICC of 0.16 (ns).

Importantly, these cross-informant stability coefficients confound variation in stability with variation due to different raters. As noted in Table 2, the cross-informant ICC for parent and teacher report on the APSD ranged from 0.27 ($p < 0.001$) for the Narcissism scale to 0.39 ($p < 0.001$) for the total APSD score. Across the three follow-up assessments, the average cross-informant ICC for parent and youth report ranged from 0.31 for the Narcissism scale to 0.52 for the total score. When the stability coefficients were corrected for attenuation based on these estimates of cross-informant agreement (Ghiselli, Campbell, & Zedeck, 1981), all of the overall estimates of stability met or exceeded 1.00 and only three of the individual ICC estimates fell below 1.00. Such corrections could not be conducted for the teacher reports predicting later self-report because there was no estimate of concurrent correlations between teacher and self-reports. However, these analyses suggest that much of the variation in the cross-informant correlations across time could be attributed to the level of agreement between informants.

For these overall analyses of stability, the younger (grades 3 and 4 at the initial assessment) and older (grades 5 and 6 at the initial assessment) cohorts were collapsed to estimate stability. When separate stability estimates were conducted for the two cohorts, very similar stability estimates were obtained for the parent ratings across time. Specifically, the ICC across the four time points for the total APSD score was 0.93 in the younger cohort and 0.91 in the older cohort (both $p < 0.001$) and this was similar across the APSD subscales, with ICCs ranging from 0.91 to 0.92 in the younger cohort and 0.81 to 0.91 in the older cohort (all $p < 0.001$). For teacher report predicting later parent report, the stability estimate was somewhat stronger for the younger (0.89) than older (0.80) cohorts (both $p < 0.001$) and this was largely due to the higher ICC estimates for the Impulsivity scale of the APSD in the younger (0.81) compared with the older (0.64) cohort (both $p < 0.001$). For both parent and teacher report predicting later youth self-report, the opposite
A pattern was found, with stability estimates being somewhat lower in the younger cohort than in the older cohort on the total APSD score (0.70 and 0.68 for the younger cohort and 0.87 and 0.82 for the older cohort, respectively; all \(p < 0.001 \)). These lower estimates for cross-informant ratings in the younger cohort were fairly consistent across the various APSD subscales.

The initial test of potential predictors of stability involved correlating each of the hypothesized predictors with time 5 APSD scores, after controlling for time 1 APSD scores. Thus, while not being direct predictors of stability, these analyses determine whether variables were associated with change in APSD scores from the initial assessment to the last follow-up. These partial correlations are provided in Table 4. Only four variables predicted total APSD scores, after controlling for the initial level of these traits. Socioeconomic status was negatively associated with later APSD scores (−0.39, \(p < 0.01 \)), whereas conduct problems (0.30, \(p < 0.05 \)), total delinquency (0.23, \(p < 0.05 \)), and the negative parenting composite (0.31, \(p < 0.05 \)) were all positively associated with later APSD scores. A similar pattern of results emerged across APSD subscales. However, the partial correlations for total conduct problems and total delinquency did not reach significance in predicting CU traits (0.21 and 0.20) or impulsivity (0.14 and 0.17), although both were in the expected direction. Also, socioeconomic status did not reach significance for predicting impulsivity (−0.15), although it also showed the same trend as the other APSD scales. Another consistent pattern of note is that the positive parenting composite by child report was consistently negatively correlated with the APSD scores (ranging from −0.11 to −0.22), although none of these correlations reached significance.

Table 4. Predictors of psychopathic traits controlling for initial level Time 5 APSD scores

<table>
<thead>
<tr>
<th>Time 2 predictors</th>
<th>Total</th>
<th>Callous–Unemotional</th>
<th>Narcissism</th>
<th>Impulsivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>−0.06</td>
<td>0.13</td>
<td>−0.14</td>
<td>−0.08</td>
</tr>
<tr>
<td>Sex</td>
<td>−0.15</td>
<td>−0.07</td>
<td>−0.12</td>
<td>−0.11</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>−0.06</td>
<td>−0.06</td>
<td>−0.09</td>
<td>−0.06</td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td>−0.39**</td>
<td>−0.46***</td>
<td>−0.32*</td>
<td>−0.15</td>
</tr>
<tr>
<td>K-BIT Composite</td>
<td>0.09</td>
<td>−0.09</td>
<td>0.07</td>
<td>0.17</td>
</tr>
<tr>
<td>Antisocial/conduct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODD/CD symptoms</td>
<td>0.30*</td>
<td>0.21</td>
<td>0.32*</td>
<td>0.14</td>
</tr>
<tr>
<td>Total delinquency</td>
<td>0.23*</td>
<td>0.20</td>
<td>0.06</td>
<td>0.17</td>
</tr>
<tr>
<td>Behavioral inhibition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reward Dominance</td>
<td>0.03</td>
<td>0.11</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>Thrill-Seeking</td>
<td>0.05</td>
<td>−0.13</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>Parenting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Parenting (P)</td>
<td>−0.07</td>
<td>−0.21</td>
<td>0.02</td>
<td>−0.03</td>
</tr>
<tr>
<td>Positive Parenting (Y)</td>
<td>−0.21</td>
<td>−0.21</td>
<td>−0.11</td>
<td>−0.22</td>
</tr>
<tr>
<td>Negative Parenting (P)</td>
<td>0.31*</td>
<td>0.27*</td>
<td>0.29*</td>
<td>0.28*</td>
</tr>
<tr>
<td>Negative Parenting (Y)</td>
<td>0.20</td>
<td>0.25*</td>
<td>0.18</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Correlations reported in body of table are partial correlations controlling for time 1 scores from APSD. APSD, Antisocial Process Screening Device (Frick & Hare, 2001). Sex was coded Boy = 1 and Girl = 2; ethnicity was coded Caucasian = 1 and African American = 2; socioeconomic status, Duncan’s Socioeconomic Index (Hauser & Featherman, 1977); K-BIT, Composite Index from the Kaufman Brief Intelligence Test (Kaufman & Kaufman, 1990); ODD, Oppositional Defiant Disorder; CD, Conduct Disorder; (P) parent report; (Y) youth report; *\(p < 0.05 \); **\(p < 0.01 \); ***\(p < 0.001 \).
Patterns of Stability within the Sample

Previously, we provided our justification for oversampling groups of children with CU traits and conduct problems. However, this methodology led to the recruitment of extreme groups that distorted the distribution of CU traits in the sample. Given the correlations among APSD dimensions (0.42–0.63, all \(p < 0.001 \), for parent report at time 1 and 0.47–0.72, all \(p < 0.001 \), for teacher report at time 1), it is likely that this methodology also distorted the distribution of all the APSD scales somewhat. Thus, a second method of assessing stability and determining predictors of stability was used, which (i) utilized the extreme group sample recruitment design and (ii) utilized normative cut-offs from the large community sample screened to recruit the current study participants. Also, these analyses were limited to the 71 children who (i) were either above the upper quartile of the community sample according to parental report of CU traits or at or below the mean according to parental report of CU traits at the time 1 assessment and (ii) provided data at each of the last three follow-up assessment points. This led to two groups of children, one that was initially rated as being high on CU traits (\(n = 37 \)) and one that was initially rated as low on these traits (\(n = 34 \)). Five patterns of stability were assessed for these two groups. One pattern of stability (\(n = 24 \)) included children who scored at or below the full community sample mean on parental ratings of CU traits at all three of the follow-up assessment points. Three additional groups designated those who crossed the upper quartile of CU traits based on the full community sample mean at either one (\(n = 6 \)), two (\(n = 3 \)), or all three (\(n = 11 \)) follow-up assessments. A final group consisted of those children who did not fall into any of these stability groups (\(n = 27 \)).

The distribution of these patterns of stability across the two groups differing on their initial level of CU traits is provided in Table 5. As evidenced in this table, the patterns of stability were not distributed equally across the two groups (\(\chi^2(\text{df} = 4) = 24.40, p < 0.001 \)). Specifically, 83% (\(n = 20 \)) of the group that showed stable low scores across follow-up assessments were in the group who initially scored low on CU traits. Further, all 11 of the children that exceeded the normative cut-off at all three assessment points came from the group that was initially rated by parents as high on CU traits. Also, it was less likely for children who initially scored low on CU traits to obtain high scores at later assessment points than it was for children

<table>
<thead>
<tr>
<th>Time 1 status</th>
<th>Low callous–unemotional ((n = 34))</th>
<th>High callous–unemotional ((n = 37))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable low</td>
<td>(n = 20) (59%/83%)</td>
<td>(n = 4) (11%/17%)</td>
</tr>
<tr>
<td>High at one follow-up</td>
<td>(n = 2) (6%/33%)</td>
<td>(n = 4) (11%/67%)</td>
</tr>
<tr>
<td>High at two follow-ups</td>
<td>(n = 2) (6%/67%)</td>
<td>(n = 1) (3%/33%)</td>
</tr>
<tr>
<td>High at three follow-ups</td>
<td>(n = 0) (0%/0%)</td>
<td>(n = 11) (30%/100%)</td>
</tr>
<tr>
<td>Other</td>
<td>(n = 10) (29%/37%)</td>
<td>(n = 17) (46%/63%)</td>
</tr>
</tbody>
</table>

Relationship between time 1 status and stability groups was significant (\(\chi^2 (\text{df} = 4) = 24.40, p < 0.001 \)).
who were initially high on CU traits to score lower on these traits at later assessments. Specifically, of those children who were initially rated low on CU traits, only 4 (12%) were rated high on CU traits at any later point in time and only 19 (29%) even fell between the mean and upper quartile of the community sample at any later assessment point. However, while it was rare for a child initially rated as high on CU traits to score below the community sample mean at each follow-up assessment ($n = 4; 11\%$), a substantial number never crossed the normative cut-off again at any of the follow-up assessments ($n = 17; 46\%$).

Based on the patterns of stability reported in Table 5, there were eight children who showed somewhat transitory elevations of CU traits, being rated as high on CU traits by parents at the initial assessment but scoring below the community sample mean at all assessment points or scoring high at only one follow-up point. In contrast, there were 12 children who showed more stable patterns of CU traits, initially being rated high and also being rated above the normative cut-off at two or more follow-up assessments. These two groups of children were compared on all the predictors of persistence to the 20 children who scored at or below the community sample mean on CU traits at all assessment points. The only variables to differentiate among these groups were socioeconomic status ($F(2,37) = 6.88, p < 0.01; \eta^2 = 0.27$), intelligence ($F(2,37) = 5.87, p < 0.01; \eta^2 = 0.24$), conduct problem symptoms ($F(2,37) = 6.59, p < 0.01; \eta^2 = 0.26$), trials played on the reward dominance task ($F(2,37) = 3.81, p < 0.05; \eta^2 = 0.17$), the positive parenting composite based on youth report ($F(2,35) = 3.43, p < 0.05; \eta^2 = 0.16$), and the negative parenting composite based on youth report ($F(2,35) = 5.91, p < 0.01; \eta^2 = 0.25$). Because of the group differences in intelligence and socioeconomic status, the analyses for the other variables that differentiated groups were repeated using intelligence and socioeconomic status as covariates. The only two findings to remain significant were for the level of conduct problems ($F(4,35) = 4.61, p < 0.05; \eta^2 = 0.21$) and the positive parenting composite based on youth report ($F(4,33) = 3.57, p < 0.05; \eta^2 = 0.18$).

The pattern of results for socioeconomic status, intelligence, and the two variables that differentiated groups after controlling for these variables, are represented in Figure 1. As evident in this figure, the group that showed a decline in CU traits (desisters) were very similar to the group that was low on CU traits (stable low) across the entire study period. In fact, using Tukey’s procedures for pairwise comparisons, there were no significant differences between these two groups on any predictor of persistence. In contrast, the group that showed relatively stable patterns of the CU traits (stable high) differed from the stable low group on all four variables, and differed from the desister group on intelligence test scores and level of conduct problems.

DISCUSSION

The primary purpose of the current study was to provide initial estimates of the stability of psychopathic traits over an extended follow-up period (i.e. 4 years). For parent report, which was the one method consistent across all follow-up assessments, the composite index of psychopathic traits showed an average measure
intraclass correlation coefficient of 0.93 (\(p < 0.001 \)) across all time points, with estimates ranging from 0.87 (Impulsivity) to 0.92 (Narcissism) (both \(p < 0.001 \)) for the individual dimensions of psychopathy. These coefficients suggest that a substantial amount of variance in parent ratings is consistent across time. Further, the ICC estimates for the 4 year stability of parent ratings ranged from 0.71 for the CU scale of the APSD to 0.80 for the Total APSD score (all \(p < 0.001 \)). These coefficients also indicate a substantial degree of stability in parent ratings, especially given that these ICC estimates, in contrast to standard correlation coefficients, take into account both changes in the relative ranking of a child’s scores across time and also absolute changes in the child’s score over time.

To interpret these stability estimates, several comparisons can be made. First, as reviewed in the introduction, there are few studies directly testing the stability of psychopathic traits in adults. One such study reported 2 year stability estimates of 0.60 for men and 0.65 for women for total psychopathy scores (Rutherford et al., 1999). While it is somewhat difficult to compare the ICC estimates obtained in the current study with the correlation coefficients reported by Rutherford et al. (1999), they do suggest that parent ratings of psychopathic traits in youth show comparable or higher coefficients than those reported in adults. Second, the stability estimates obtained in the current sample of youth can be compared with the stability of parent ratings of other psychological traits in children. This is important for a number of reasons. For example, it shows how comparable the stability of psychopathy is to other forms of psychopathology in children. Further, it helps to determine whether parents show variability in their ratings across time or whether their ratings are inflated by stable perceptions that do not reflect actual changes in the child’s adjustment. In two studies of the stability of parent ratings of children’s adjustment in community samples over 3 years (ages 4–16; McConaughy, Stanger. & Achenbach, 1992) or 4 years (ages 4–12; Verhulst, Koot, & Berden, 1990), the mean stability estimates across different types of child adjustment were 0.46 (range [713–736 (2003)](https://doi.org/10.1002/1098-2416(200309)21:5<729::AID-BLSL9>3.0.CO;2-2)
of 0.30–0.58) and 0.41 (range of 0.11–0.67), respectively. Again, these stability estimates are much lower than those found for parent ratings of psychopathy in the current study. Third, the estimates of stability obtained for psychopathic traits in the current study can be compared with those found for other measures of personality in both adults in children. A meta-analysis of 152 longitudinal studies providing 3,217 test–retest intervals reported average trait consistency of 0.31 for samples of children and adolescents, 0.54 during the college years and young adulthood, 0.64 in middle adulthood, and 0.74 between the ages of 50 and 70 (Roberts & DelVecchio, 2000). Importantly, these meta-analytic estimates of the stability of personality traits were adjusted to reflect a constant test–retest interval of 6.7 years, which is somewhat longer than the 4 year interval used in the current study. However, the stability estimates of psychopathic traits obtained in the current study appear to be somewhat higher than is typically found for measures of personality in child and adolescent samples and are comparable to those found in adult samples.

In the current study, the stability estimates were substantially lower when different informants were used at initial and follow-up assessments. Specifically, for parent-report predicting youth self-report of psychopathy, the overall stability estimates ranged from 0.65 to 0.79 (all $p < 0.01$) for the various dimension of psychopathy studied, with the 4 year ICC estimates ranging from 0.38 to 0.51. However, these estimates confound variance related to temporal stability and variance related to differences in raters. As noted in Table 2, the contemporaneous cross-informant correlations on the dimensions of psychopathy were relatively modest. Further, when the cross-informant stability coefficients were corrected for attenuation based on the cross-informant reliability, it is clear that much of the decrease in the magnitude of the stability estimates was due to differing reporters of psychopathy.

The modest cross-informant correlations reported in this and other studies of youth (see Frick & Hare, 2001, for a review) have sometimes been viewed as a limitation in measures of psychopathic traits for youth (Seagrave & Grisso, 2002). However, this level of cross-informant consistency is actually somewhat better than is typically found when assessing childhood psychopathology, where correlations are typically around 0.27 for parent and teacher ratings, around 0.25 for parent and child self-report ratings, and around 0.20 for teacher and child self-report ratings (Achenbach, McConaughy, & Howell, 1987). The cross-informant correlations reported in the current study are, in fact, comparable to those found for differing informants reporting on personality traits in adult samples. Specifically, the average correlation between self- and spouse ratings of specific facets of personality ranged from 0.24 to 0.66 with a mean of 0.39 in a sample of 47 married couples (McCrae, Stone, Fagan, & Costa, 1998). Similarly, in a sample of college undergraduates ($n = 184$), the average correlation between self-ratings of personality and ratings made by parents, college acquaintances, and hometown acquaintances was reported as being 0.37, 0.36, and 0.30, respectively (Funder, Kolar, & Blackman, 1995).

While these data support the stability of psychopathic traits in youth, they also clearly indicate that there is some variability in the level of these traits across time. Further, our data suggest that the pattern of change tends to be one in which some youth high on psychopathic traits improve and show less severe levels of these traits over time. It was less likely for youth who scored initially low on these traits in childhood to develop significant levels of these traits later in childhood and
adolescence. The important question resulting from these findings is what factors might predict these variations in stability? Our data suggest that factors related to stability may be very different from the variables associated with initial levels of these traits. Specifically, in the current sample (Frick et al., 2003b) and in other samples (Barry et al., 2000; Blair, 1999; Fisher & Blair, 1998; Loney et al., 2003), measures of behavioral inhibition (e.g. thrill seeking behavior, a reward dominant response style) have been associated with psychopathic traits, especially the CU dimension. However, in the current study, these measures showed little predictive utility after controlling for initial levels of these traits.

Instead, the two most consistent predictors of stability across the different methods for estimating stability were factors related to the child’s psychosocial context, such as socioeconomic status and quality of parenting. These associations may seem somewhat surprising, given past findings that measures of the quality of parenting tend to be less related to the antisocial behavior of children with CU traits than for children without these traits (Wootton, Frick, Shelton, & Silverthorn, 1999). However, this earlier study did not test the association between parenting practices and CU traits, but focused on the association between parenting and antisocial behavior in children with and without CU traits. Further, these results are consistent with research demonstrating the importance of parenting in the development of guilt and empathy and other aspects of conscience (Frick & Morris, in press; Hoffman, 1994; Kochanska, 1995). Finally, it is quite possible that, although a child’s temperament may play a larger role in placing a child at risk for problems in conscience development (Frick & Morris, in press), the quality of later socialization that is experienced by the child may play a more important role in determining whether the child overcomes this risk later in development.

The only other variable to show some consistency in predicting the stability of psychopathic traits in our non-referred sample was the child’s level of conduct problems. That is, children with higher levels of conduct problem behavior tended to have more stable levels of psychopathic traits, even after controlling for initial levels of these traits. This finding suggests that studies examining psychopathic traits in antisocial and criminal samples may overestimate the stability of these traits in individuals who show less extreme antisocial behavior. Unfortunately, there is much less research on individuals with psychopathic traits who do not also show antisocial and criminal behavior (Hare, 1998; Lilienfeld & Andrews, 1996). However, our findings suggest that this may be an important group to study, not only to determine what prevents them from showing severe antisocial behavior despite their callous, impulsive, and narcissistic traits, but also to determine what might make their personality traits less stable over time. It is possible that chronically engaging in antisocial, aggressive, and criminal behavior over time further desensitizes individuals to the consequences of their behavior on themselves and others, making their callous personality traits more intractable.

All of these interpretations need to be made in the context of a number of limitations. First, the current sample was very modest in size. This may have prevented some significant predictors of stability from emerging due to a lack of statistical power. Also, although there was little evidence for selective attrition, the small initial sample magnifies the effects of even the minimal attrition that occurred in our sample. The small sample also prevented us from using more sophisticated statistical methods for estimating stability in our measure of psychopathic traits and...
testing predictors of stability (e.g. latent growth curve methodology). Second, the recruitment strategy was designed to ensure a significant number of children high on psychopathic traits and a significant number of these children with and without conduct problems. However, this strategy resulted in an atypical distribution of scores in our sample, which could have influenced our correlations. Although we tried to overcome this limitation by estimating stability and testing predictors of stability using multiple methods, the atypical distribution created by this method of recruitment could influence the generalizability of the results to other samples with different distributions. For example, if the highest scorers on the measure of psychopathy also show the highest level of stability, our sampling strategy that oversampled such individuals could have inflated estimates of stability. On the other hand, recruiting children with the highest scores increases the potential effects of regression to the mean for later ratings and, thus, decreases the obtained stability estimates. Third, the tests of predictors of stability were largely exploratory in nature, given the absence of past research on such predictors. The nature of the research question, as well as the modest sample size, led to our decision not to control for inflated Type I rates in analyses. However, this methodology makes it possible that some associations may not be replicated in other samples. Fourth, the assessment of psychopathy relied on a rating scale method to assess psychopathy, rather than on the strategy of combining interview results with historical records used by the PCL-R (Hare, 2003). Because it does not rely on historical information, this rating method allowed us to estimate change in scores across time. Further, there is a body of research supporting the validity of this method of assessing psychopathic traits in youth (Frick & Hare, 2001). However, it is unclear how well these results will generalize to other methods of assessing psychopathy. Also, the ratings at the follow-up assessment were conducted by mail and this may have affected a child’s responses due to concerns about privacy.

A critically important limitation of the current findings is that, although our results demonstrate substantial stability in psychopathic traits over a 4 year period in older children and young adolescents, these data do not provide an estimate of how many youth who score high on these traits in childhood will eventually meet established criteria for a diagnosis of psychopathy as adults. Many of the concerns about applying the construct of psychopathy to children are based on the possibility that there will be an assumption that youth who score high on childhood measures of psychopathy will be highly likely to be diagnosed as psychopathic as adults (Seagrave & Grisso, 2002). Clearly, there are no data to determine the actual risk for adult diagnoses in children who score high on psychopathic traits. More importantly, there are important statistical, theoretical, and developmental issues to suggest that one should expect very few children with psychopathic traits to be so diagnosed as adults. First, as reviewed previously, much of the work on adult psychopathy has focused on designating a small subgroup of incarcerated adults (Hart & Hare, 1997). As result, the existing diagnosis designates an outcome that is likely to be found at a very low base rate in non-referred samples. Predicting very low base rate phenomena is very difficult and almost always associated with high rates of false positive predictions (Kraemer, 1992). Second, even in adults, there has been very limited work on the expression of psychopathic traits in non-referred samples. Further, there is still considerable debate as to whether these traits in samples of individuals without severe antisocial behavior are measuring the same construct.
(Hare, 1998; Lilienfeld & Andrews, 1996). As a result, even if these traits remain stable into adulthood, this does not necessarily mean that this will strongly predict the personality pattern associated with severe antisocial and violent behavior that has been the focus of most of the research on psychopathy in adult samples. Third, and perhaps most importantly, a hallmark of taking a developmental approach to understanding psychopathological conditions is that, as one attempts to understand the developmental processes that can lead to an outcome of interest, one should assume that the pathways are changeable (Cicchetti & Rogosch, 1996). Further, the earlier in development one attempts to study, the greater the degree of change that should be expected. This is because of both the longer period of time during which biological and contextual forces can operate to deflect children from a typical pathway and the greater malleability of children’s personality earlier in development (McCrae et al., 2002; Roberts & DelVecchio, 2000).

This last issue clearly illustrates both the great potential danger and the great potential benefit of extending the construct of psychopathy to youth. If developmental considerations are ignored, assumptions about the long term outcome of these children can be made erroneously, with great potential consequences to the child. If, however, the extension of the construct of psychopathy is made with appropriate attention to developmental considerations, this research could provide important information for designing more effective treatment for children with severe conduct problems (Frick, 2001) and potentially prevent the development of a personality disorder that can have a huge detrimental effect on society. Our findings suggest that psychopathic traits are more stable than other problems in adjustment experienced by youth and are comparable in stability to personality traits assessed in adults. However, our results also indicate that some change in a child’s level of these traits is possible over time and more research is needed to uncover what factors may influence this change. Our exploratory results on predictors of stability suggest that the factors influencing change may be quite different from those predicting the initial level of psychopathic traits. Specifically, factors in the child’s psychosocial ecology may play a more important role in the continuity of these traits than in the initial risk for developing them. If such findings are replicated, they could have important implications for designing more effective interventions for children with psychopathic tendencies. Such interventions could focus not only on removing factors that can place a child at risk for developing these traits, but also on factors that may promote prosocial behavior in children who already manifest them.

REFERENCES

